Using a Synthetic Strangle to Manage Stock Market Risk

Журнал «Дайджест-Финансы»
т. 22, вып. 3, сентябрь 2017

Получена: 15.02.2017

Получена в доработанном виде: 07.03.2017

Одобрена: 13.04.2017

Доступна онлайн: 21.09.2017


Коды JEL: C01, G01, G32

Страницы: 286-297


Yashin S.N. National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation jashinsn@yandex.ru

Koshelev E.V. National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation ekoshelev@yandex.ru

Sokolov V.V. National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation sokolov2w@gmail.com

Importance Options are a representative example of derivative securities that are applied to mitigate investors’ risks. Considering contradictions and discrepancies arising from changes in the options price due to the fluctuating price for primary securities, rather than the flat exercise price for the option, investors seek possible combinations of securities so to reduce equity risks. The article considers a synthetic options strategy – a synthetic strangle.
Objectives The research models a synthetic strangle and applies it in practice using stocks of LUKOIL Oil Company.
Methods The research involves methods of logic and statistical analysis.
Results We apply a symmetrical binomial lattice to determine the synthetic strangle price. Based on a binomial model, we build the model of LUKOIL’s stock price movement and consider the case of synthetic strangle duplication by constructing a portfolio of stocks and bonds, which generates the same cash flows as options.
Conclusions and Relevance It is feasible to use a synthetic strangle in a situation when market stock price movements are uncertain and investors protect their capital against unexpected fluctuations in the stock market by purchasing a synthetic option. We also found break-even points for the investor.

Ключевые слова: synthetic option, strangle, option, equity risk

Список литературы:

  1. Bodie Z. On the Risk of Stocks in the Long Run. Financial Analysts Journal, 1995, vol. 51, iss. 3, pp. 18–22. URL: https://doi.org/10.2469/faj.v51.n3.1901
  2. Brandão L., Dyer J., Hahn W. Using Binomial Decision Trees to Solve Real-Option Valuation Problems. Decision Analysis, 2005, vol. 2, iss. 2, pp. 69–88. URL: https://doi.org/10.1287/deca.1050.0040
  3. Dixit A.K., Pindyck R.S. Investment under Uncertainty. Princeton, Princeton University Press, 1994, 467 p.
  4. Merton R. The Theory of Rational Option Pricing. Bell Journal of Economics and Management Science, 1973, vol. 4, no. 1, pp. 141–183. URL: https://doi.org/10.2307/3003143
  5. Cox J., Ross S., Rubinstein M. Option Pricing: A Simplified Approach. Journal of Financial Economics, 1979, vol. 7, iss. 3, pp. 229–263. URL: https://doi.org/10.1016/0304-405X(79)90015-1
  6. Cox J., Rubinstein M. Options Markets. Englewood Cliffs, N.J., Prentice-Hall, 1985, 517 p.
  7. Hull J. Options, Futures and Other Derivatives. Upper Saddle River, Prentice-Hall, 2006, 869 p.
  8. Biger N., Hull J. The Valuation of Currency Options. Financial Management, 1983, vol. 12, iss. 1, pp. 24–28. doi: 10.2307/3664834
  9. Schwartz R. Advanced Strategies in Financial Risk Management. New York, New York Institute of Finance, 1993, 688 p.
  10. McMillan L.G. MakMillan ob optsionakh [McMillan on Options]. Moscow, Analitika Publ., 2002, 442 p.
  11. Shvedov A.S. [Lectures. Mathematical methods used in work with options]. Ekonomicheskii zhurnal VshE = The HSE Economic Journal, 1998, vol. 2, no. 3, pp. 385–409. (In Russ.)
  12. Marshall J.F., Bansal V.K. Finansovaya inzheneriya: Polnoe rukovodstvo po finansovym novovvedeniyam [Financial Engineering: A Complete Guide to Financial Innovation]. Moscow, INFRA-M Publ., 1998, 784 p.
  13. Natenberg Sh. Optsiony: Volatil'nost' i otsenka stoimosti. Strategii i metody optsionnoi torgovli [Option Volatility & Pricing: Advanced Trading Strategies and Techniques]. Moscow, Al'pina Bizness Buks Publ., 2007, 544 p.
  14. Bastian-Pinto C., Brandão L., Ozorio L. A Symmetrical Binomial Lattice Approach, for Modeling Generic One Factor Markov Processes. Real Options. Theory Meets Practice: 16th Annual International Conference, Rome, Italy, June 28–30, 2012. URL: http://realoptions.org/openconf2012/data/papers/26.pdf
  15. Guthrie G. Learning Options and Binomial Trees. Wilmott Journal, 2011, vol. 3, iss. 1, pp. 1–23. URL: https://doi.org/10.1002/wilj.42
  16. Trifonov Yu.V., Yashin S.N., Koshelev E.V. Tekhnologii fondovogo rynka v biznese: monografiya [The stock market technologies in business: a monograph]. Nizhny Novgorod, Pechatnaya masterskaya RADONEZh Publ., 2015, 151 p.
  17. Black F., Scholes M. The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 1973, vol. 81, no. 3, pp. 637–654. doi: http://dx.doi.org/10.1086/260062
  18. Sharpe W., Alexander G., Bailey J. Investitsii [Investments]. Moscow, INFRA-M Publ., 2001, 1028 p.

Посмотреть другие статьи номера »


ISSN 2311-9438 (Online)
ISSN 2073-8005 (Print)

Свежий номер журнала

т. 22, вып. 3, сентябрь 2017

Другие номера журнала